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Australian students’ results on international 
tests of mathematics (TIMMS) and 
numeracy (PISA) lag behind many 
comparable countries and have stagnated 
or declined compared to previous years. 
Around two-thirds of Australian Years 
4 and 8 school students achieved the 
TIMMS 2019 National Proficient Standard 
— compared to 92-96% of students 
from highest ranking countries including 
Chinese Taipei, Hong Kong, Singapore and 
Japan (Thomson et al, 2020). Australian 
15-year-olds scored around three years 
behind Singapore on the PISA test in 2022, 
with around half achieving the national 
proficiency standard (OECD 2022). 

Low mathematics achievement in 
standardised testing has real consequences 
for what students know and can do. For 
instance, one respondent in the 2021 
Knowledge and Skills Gap survey of 164 
Years 7-10 teachers reported the following:

	 “�Students are coming from primary 
school without fundamentals such 
as knowing their multiplication tables. 
They have no concept of number and 
reasonableness of results. They do not 
predict answers through estimation to 
understand the reasonableness 
of ‘calculator’ answers.” 
(Walker, 2021 p.5)

Policy responses to address disappointing 
educational outcomes have enjoyed limited 
overall success. For instance, strategies 
ordained by the landmark Gonski Review, 
such as increasing teacher-to-student 
ratios and channelling funding towards 
disadvantaged groups, are not currently 
yielding intended outcomes (Australian 
Financial Review, September 14, 2022). 

This is because a piece of practice and 
policy has not been properly addressed 
— teacher effectiveness: putting the 
best teachers in front of students and 
teaching them in the most effective way. 
At best, it is inconsistent — and in some 
cases, inadequate. For this reason, many 
education practitioners and policymakers 
are now dedicated to enhancing teacher 
effectiveness in schools across Australia.

A key element of achieving this is to better 
align instruction with scientifically-based 

evidence of what is likely to be most 
successful for student outcomes. The body 
of work contained in the science of learning 
integrates elements of cognitive science, 
educational psychology, and neuroscience 
with evidence-based, proven teaching 
methods and high-quality instructional 
resources. 

To date, however, there has been limited 
interaction of science of learning with key 
domains, particularly mathematics and 
mathematical cognition and learning. For 
this reason, a ‘Science of Maths’ is required 
to bridge key elements of the science 
of learning with mathematical cognition 
along with instructional implications for 
mathematics and numeracy.

Although many are broadly invested in 
improving mathematics instruction in 
schools, considerable differences exist 
among both researchers and educators as 
to what constitutes success and how this 
should be measured. While some focus 
on participation and engagement as a 
core outcome, others are more concerned 
with measurement of learning outcomes, 
either along a learning trajectory or 
on standardised tests of achievement. 
These three broad groups of researchers 
and practitioners in maths education 
can be characterised as engagement 
focused, strategy focused and measurable 
effectiveness focused.

The engagement focused group 
holds that students dislike mathematics 
for numerous reasons, including timed 
tests, rote learning, fixed mindsets, the 
decontextualised nature of mathematics, 
and competition. Proponents maintain 
that the system is set up to support high-
achieving students to the detriment of 
students who struggle with mathematics, 
and suggest that the use of rich ‘real-
world’ tasks in collaborative group settings 
will improve mindsets and engage more 
students — leading to higher achievement 
overall. To measure effectiveness of their 
approach, they track student engagement, 
feelings and attitudes towards mathematics 
and number of classes attended. 

The mathematical reasoning/strategy 
focused group emphasises facilitating 
conceptual knowledge in preference to 
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procedural knowledge. They surmise that 
by supporting students to understand 
concepts and reason effectively, 
students can engage at a deeper level 
with mathematics, leading to higher 
achievement. According to this group, the 
development of procedural knowledge and 
fluency happens organically through open-
ended practice and classroom activities. 
Progress is measured through student 
interviews, reasoning, talk, and confidence 
in applying strategies. Techniques, 
programs and assessment tools which 
subscribe to this approach include number 
talks, Building Thinking Classrooms, and 
the Maths Online Interview respectively. 

The measurable-effectiveness 
focused group is committed to using 
instructional practices which have been 
consistently demonstrated to be effective 
with large numbers of students in high-
quality experimental settings, such as 
those outlined in findings by the National 
Mathematics Advisory Panel (2008) or 
from organisations like the National 
Center for Intensive Intervention. They 
favour a gradual release of responsibility 
approach, focusing on explicit instruction 
and developing mathematical competency 
during the acquisition phase, followed 
by extensive practice to develop fluency, 
then minimally-guided approaches with 
real-world mathematical applications in 
the generalisation and adaptation phases. 
Conceptual and procedural knowledge are 
given equal weight in terms of emphasis 
throughout the process. Mathematics 
difficulties are attributed to poor instruction 
and/or insufficient practice, and progress 
is measured relative to established norms 
such as Curriculum- and Standards- Based 
Measurement. 

All of these schools of thought highlight 
important aspects of teaching mathematics. 
For example, the engagement focused 
group correctly proposes that engaging 
students is critical for learning in 
mathematics, and the mathematical 
reasoning/strategy focused group 
emphasises the importance of conceptual 
knowledge which is essential if students 
are to become expertly numerate. 
However, each of these positions illustrate 
only part of the story. Engagement 
happens via building competency and 
setting students up for success, not via 
relaxing requirements on correctness of 

answers or refraining from using timed-
tests. Procedural knowledge and fluency 
is as important as conceptual knowledge 
because of its efficiency and utility in 
freeing up working memory capacity to 
focus on new and more complex concepts. 
Therefore, the science of mathematics 
is most aligned with the position held by 
the measurable-effectiveness focused 
group.

Teaching approaches which are informed 
by research on cognition and the way 
people learn mathematics and numeracy 
are of immense benefit. Cognitive science 
provides a ‘lens’ through which to assess 
the evidence for different approaches, 
including ‘why’, ‘how’, and ‘when’ to adopt 
them, empowering educators to make 
robust decisions about their instruction, 
with better educational outcomes for 
students, and hopefully, an improvement in 
the ‘health’ of mathematics and numeracy 
proficiency in Australia overall. 

This paper outlines three key 
considerations within the science of 
mathematics framework: 

1.	� Our cognitive hardware and how 
learning occurs

2.	� Our cognitive software: attributes 
of the knowledge being acquired

3.	� Managing cognitive load in 
mathematics instruction
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Consideration #1. �Our cognitive hardware 
and how learning occurs

Attention:  
acts as a ‘sensory’ 
gatekeeper and 
determines what 
new information 
enters Working 
Memory. To 
complete tasks, 
individuals need 
to be able to 
sustain attention. 
Information goes to 
Working Memory.

Working Memory:  
is where information is processed. It acts as a ‘funnel’ for incoming 
information. It can contain around four chunks of information at any 
time. Information in Working Memory lasts between 15-30 seconds 
unless rehearsed. Learning occurs when information is transferred 
from Working Memory to Long Term Memory.

Long-Term Memory: 
is a ‘database’ 
of networks and 
conceptual hierarchies 
known as schemas. It 
stores vast amounts 
of information and 
has virtually unlimited 
capacity. Retrieval 
of information from 
Long Term Memory 
to Working Memory 
occurs when input 
connects with prior 
knowledge.

Conditions For Learning

Learning cannot happen if:

1)	 The learner is not paying attention — 
information to be learned must be more 
salient than competing sensory input.

2)	 The learner is anxious — anxiety hijacks 
learning pathways.

3)	 The learner’s working memory capacity 
is exceeded — only small amounts of 
information can be processed at once.

4)	 The learner does not do something 
quickly with incoming information to 
promote transfer to long-term memory.

5)	 The learner does not engage in sufficient 

rehearsal/practice for information to be 
secured in long-term memory.

6)	 There has not been sufficient rest in 
between rehearsal/practice episodes — 
working memory becomes depleted. 

7)	 The learner does not have enough prior 
knowledge within long-term memory 
to link to incoming information – 
information to be learned must be at 
least partially familiar.

Research is revealing more about the 
workings of our cognitive hardware and 
how we learn. Key aspects and their 
implications for teaching practice in 
mathematics and numeracy are dealt with 
in the sections below.

Figure 1. Our 
cognitive hardware

   R E T R I E V A L

TRANSFER

Anxiety:  
occurs when there 
is a perceived 
threat in the 
environment. It 
can divert cognitive 
resources away 
from working 
memory, reducing 
ability to learn.
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1. Attention

a)	� Orienting to the task and sustaining 
attention

What does the science say? 

Orienting or ‘attending’ to a task is the 
critical first step in the learning process 
(Turner, 2023), and without it, no learning 
will occur. However, it is also paradoxical. 
From an evolutionary perspective, humans 
need to be able to focus on a task, but 
still maintain enough awareness around 
them to be alert to danger. The brain is 
constantly detecting and filtering external 
and internal stimuli ready to recruit 
functional networks if the need arises. This 
means that being ‘distractible’, especially 
when young, could be regarded as an 
‘adaptive response’. Nonetheless, to be 
able to focus on learning a particular 
skill, the ‘signal-to-noise’ ratio has to 
be sufficiently high. This means that the 
information to be learned needs to be more 
salient than competing sensory input.

What is the research?

In a study by Cherry et al (2023), children 
aged 8 to 9 years old reported being ‘off 
task’ due to mind-wandering 24% of the 
time. Unsurprisingly, mind-wandering was 
associated with poor memory recall both 
immediately after a listening task and after 
a one-week delay. According to Hoyer et al 
(2021) a child’s ability to orient to a task 
is mature at six years of age, while their 
ability to sustain attention for any length of 
time is still developing until the age of 12. 
Even then, attention can be fleeting. 

What does it look like in the classroom?

Gaining and sustaining students’ attention 
therefore poses unique challenges for 
teachers. Attention is critical for many 
different aspects of mathematics, including 
task-specific attention for learning 
mathematics facts; sustaining attention 
for multi-step problem-solving; attention 
to detail in the form of lining columns in 
vertical addition, subtraction, multiplication 
and division problems; and reviewing work 
for inaccuracies. 

For students to orient and focus on an 
explanation or task, the salience of the key 
concepts needs to be optimised. This can 
be achieved in a number of ways:

	Increase ‘the signal’, or the 
salience of target concepts: Select 
pedagogies, formats and concrete 
manipulatives which draw attention 
to, and do not detract from, the 
mathematical concepts being 
taught. This may be as simple as 
projecting the voice adequately, or 
moving closer to the students while 
teaching, however, it also applies 
to the ways in which information is 
presented. According to Ramani et al 
(2019 p.79), ‘the more transparent 
the mapping between materials and 
the desired internal representation, 
the greater the learning of these 
representations’. For example, a 
linear board game in the 1-10 range 
was found to be more effective in 
improving preschoolers’ numerical 
magnitude knowledge than a 
circular board game within the 
same number range, presumably 
because it was easier to translate 
into a mental number line (Siegler 
& Ramani, 2009). Similarly, using 
colour-coding to elucidate underlying 
relationships, has also been shown 
to be preferable to presenting the 
information all in the one colour 
(Beege et al, 2021; and see section 
on instructional design below for 
further details]. 

	Reduce the ‘noise’ or number 
of distractions in the classroom 
environment (Turner 2023). 
This could include: having only 
instructionally relevant classroom 
displays at the front of the 
classroom, ensuring that the way 
information is presented does not 
include redundant images which 
draw attention away from where 
teachers want their students to focus 
(Sweller et al, 2011), confirming 
students do not have devices open 
during explicit teaching sessions, and 
positioning desks so that all students 
have clear view of the teacher. 
Distractions can also be minimised 
by choosing representations that 
contain the least amount of ‘noise’. 
For example, teaching counting 
using pop-sticks is preferable to lego 
blocks because of the association 
lego blocks have with construction, 
which may be distracting for young 
learners.
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	Explicitly teach students how to 
pay attention: As teachers are 
responsible for guiding students 
where to direct their attention, 
explicit teaching of how to pay 
attention in the form of facing the 
front, eyes looking and ears listening 
to the teacher, and keeping hands 
to yourself, followed by consistent 
reinforcement is also necessary (see 
Dowley & Lovell, 2024).

	Sustain students’ attention using 
Opportunities to Respond (OTRs) 
& checks for listening: Finally, 
facilitating frequent and active 
participation using techniques such 
as opportunities to respond (OTRs) 
and checks for listening during 
teacher-led explanations in the 
explicit teaching phase of instruction 
are ways of sustaining students’ 
focus and promoting recall (Barton 
2023; Macsuga-Gage & Simonsen 
2015).

b. Anxiety – the ultimate distraction

What does the science say? 

Importantly, if an individual perceives 
environmental ‘danger’, for example, 
the possibility of failing to provide the 
correct answer in response to the teacher 
in front of the class, attention networks 
and emotion centres of the brain may be 
activated which result in an ‘exaggerated 
focus on and response to the potential 
threat, as well as a feeling of pain in 
anticipation of the threat’ (Geary, 2024, 
p.6). Subsequently, the brain has little 
working memory capacity to focus on 
anything other than the threat — it can 
be the ultimate ‘distraction’ (Beilock & 
Willingham, 2014). On the other hand, if 
no threat is perceived, and an individual 
is oriented to the task, working memory 
capacity is freer to focus on learning 
(Beilock & Willingham 2014; Trezise & 
Reeve 2014).

What is the research?

Mathematics is often associated with 
anxiety, perhaps because of its high-stakes 
nature. Concepts are often complex and 
difficult to understand, and an answer is 
either 100% correct or 100% incorrect. 
Therefore, the risk of trying is greater and 

perhaps more anxiety-provoking than some 
other subjects. Stakes can be made even 
higher when a student is ‘put on the spot’ 
to demonstrate knowledge they have not 
been taught, or tested under time pressure 
(Beilock & Willingham, 2014). Research 
demonstrates that the ‘story’ individuals 
tell themselves about themselves, 
otherwise known as their self-concept, 
depends on the perceived control they have 
over the outcome of an action (Pekrun 
2006; Van der Beek et al, 2017). 

So, if a student perceives that they 
have little control over the outcome 
of a mathematical task based on past 
experiences, they are likely to have a poor 
mathematical self-concept, resulting in 
anxiety, reduced motivation to try, and 
less working memory capacity to perform 
the mathematical task. This explains why 
difficulties in mathematics have been 
found to cause anxiety and not the other 
way around (Geary, 2024). On the other 
hand, if a student perceives that the 
mathematical task is achievable, this feeds 
into a healthier mathematical self-concept 
which elicits enjoyment and motivation 
to persist and frees up working memory 
capacity to focus on the mathematics.

What does it look like in the classroom?

Given the all-encompassing nature of a 
perceived environmental threat such as 
impending failure, and an individual’s 
inability to focus on little else if this occurs, 
then facilitating wellbeing and preventing 
anxiety is imperative for learning and 
achievement in mathematics. Through 
classroom interactions, teachers play an 
instrumental role in the ‘stories’ which 
students tell themselves about themselves 
with reference to their mathematical 
aptitude, as previously discussed. However, 
there is often confusion as to how this can 
be achieved. 

For example, focusing on the anxiety 
independently of the mathematics is 
unlikely to be productive, unless the 
anxiety is ‘generalised’ across all aspects 
of the student’s life, in which case referral 
for individual therapy might be required. 
Secondly, contrary to common beliefs 
about ‘wellbeing’ in the mathematics 
classroom, there is no reason why teachers 
should relax requirements around the 
‘correctness’ of answers, reduce an 
emphasis on practice, or refrain from using 
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timed tests which can be informative about 
the efficiency of students’ strategies. What 
matters is that teachers use techniques 
that support the development of positive 

How to support positive mathematical self-concept

	Cultivate a sense of belonging to the 
group for all students. For example, 
be sensitive to student confidentiality 
and refrain from classroom activities 
which make a student’s difficulty 
with mathematics obvious to other 
students, such as requiring students 
to correct other students’ answers to 
number facts tests, or putting them 
‘on the spot’ to solve mathematics 
problems which have not been 
explicitly taught and practiced (Pirola-
Merlo 2003).

	Teach to improve students’ 
mathematics competency levels. 
Focus on consolidating fundamentals 
in number and space before moving 
to more difficult tasks (Beilock & 
Willingham, 2014).

	Model and foster positive attitudes 
towards mathematics, including 
persisting in the face of challenges.

	Pitch instruction within students’ 
capacity by aiming for an 80% 
success rate, as often as possible 
(Rosenshine, 2012) especially in front 
of peers, and adapt instruction to 
student needs throughout the learning 
process by breaking tasks into smaller 
steps or addressing misconceptions 
as required (Fisher & Frey, 2021; 
Rosenshine, 2012). This allows for 
success with a sufficient amount of 
challenge to maintain engagement 
and increases the likelihood of 
students developing positive 
mathematical self-concepts.

	Increase predictability using 
structured classroom routines, visual 
timetables and evidence-based 
pedagogies which optimise students’ 
chances of achieving success (Van der 
Beek et al, 2017). 

	Emphasise aspects of the learning 
process which are within the student’s 
control such as their strategy-use and 
provide descriptive praise regarding 
aspects of their working which are 
on track, while still alerting them to 
areas for improvement (Chalk & Bizo, 
2004). 

	When students struggle, provide 
feedback which demonstrates 
confidence in the student’s ability to 
deal with challenges such as: ‘yes, it 
is a challenging problem, but I believe 
you’ve got this’, rather than comments 
which confirm that ‘not everyone can 
be good at these types of problems’ 
(Beilock & Willingham, 2014).

	Tune in to students’ temperaments 
and abilities, and provide 
encouragement to ‘give it a go, 
even if you don’t succeed the first 
time’, especially for students who 
are unlikely to try unless they are 
confident of achieving 100% success 
such as anxious and/or perfectionistic 
students, and/or students who have 
mathematics learning difficulties. 

	Reduce test anxiety by managing 
students’ expectations, rather than 
refraining from using specific types 
of tests such as timed tests. For 
example, preface tests by saying: 
‘You will not necessarily be able to 
complete all the problems on this 
task, but if you do, that’s great’, or 
‘Everybody finds that the problems 
on this test get harder as they go 
through’. 

	Foster a ‘personal best’ approach 
rather than competitive approach in 
the classroom, in which students are 
aiming to improve on their previous 
performance rather than that of peers.

mathematical self-concepts (Van der Beek 
et al, 2017) which, in turn, prevents/
reduces anxiety, and frees working memory 
capacity to focus on the mathematics. 
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2. �The relationship between 
Working Memory and Long-
Term Memory

Human cognitive hardware is made up 
of a very limited working memory and 
a virtually limitless long-term memory 
(Sweller et al, 2019). Learning occurs when 
information is transferred from working 
memory to long-term memory, creating 
a change in its conceptual structure as 
can be seen in Figure 1. Here information 
is stored in conceptual hierarchies or 
networks known as ‘schemas’. The example 
below illustrates a possible schema for 
quadrilaterals, including categories and 
sub-categories according to the properties 
of different shapes: 

Figure 2. Possible schema for quadrilaterals

On the other hand, information cannot 
be integrated unless connections are 
made with an individual’s prior knowledge 
via retrieval (See Figure 1). Regular 
assessment allows teachers to be able 
to identify students’ current level of 
understanding, what they are ready to 
learn, and gaps and misconceptions in 
their prior knowledge, so that instruction 
can be adapted accordingly, and important 
connections can be made (Berman & 
Graham, 2018; Griffin, 2018). 

3. Working Memory

a. Working Memory capacity

What is the research?

Research demonstrates that adults can 
hold around four ‘chunks’ of information 
(Cowan, 2001) in working memory at 
any one time. For example, this line of 
numbers can be partitioned into ‘chunks’ 
in the following way: 456 234 789 123. 
Unsurprisingly, children can hold fewer 
chunks in working memory. Studies cited 
in Pailian et al (2016) demonstrated that 
5-year-olds have a visual working memory 
capacity of approximately only 1.5-3 items; 
7-year-olds can hold around 2.9-4 items; 
and 10-year-olds can hold about four 
items, approaching adult-levels. 

What does it look like in the classroom?

Working memory capacity has been 
linked to problem-solving accuracy in 
mathematics (Ferreira et al, 2022). This 
makes sense because students are required 
to hold multiple interacting elements in 
working memory at any given time. Take 
the following example: 

Seema is 28 years older than Jo. In six 
years, Seema will be three times as old as 
Jo. How old are Jo and Seema now?

There are at least three interacting 
elements in this problem which could easily 
overwhelm working memory capacity. 
Breaking the problem down into smaller, 
more manageable steps, and using spatial 
representations such as bar models, 
reduces the load on working memory at 
each step and facilitates problem-solving, 
as shown in Figure 3 below.

Trapezium
A quadrilateral 
with one pair 

of parallel sides

Isosceles
Trapezium

A trapezium where 
non-parallel sides 
are of equal length

Square
Both a rectangle and rhombus: 

all sides are of equal length 
and all angles are equal

Rhombus
A parallelogram 
with all sides 

of equal length

Parallelogram
A quadrilateral 
with two pairs 

of parallel sides 
parallel sides

Kite
A quadrilateral 

with 2 pairs of equal 
length sides and 
2 pairs of equal 

angles, where no 
sides are parallel

Rectangle
A parallelogram 
where all angles 
are equal, and 

opposite sides are 
of equal length

Quadrilateral
A polygon 

with 4 sides
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Breaking the problem into smaller 
elements:

1.	� Currently, Seema is 28 years older than Jo.

Current Age Future (in 6 years)

Jo Jo’s current age:

1 part

Jo’s age in 6 years:

1 part +6

Seema Seema’s current age: 

= �Jo’s age + 28 years  
represented by:

1 part + 28

Seema’s age in 6 years:

= her current age + 6 years

1 part + 28 + 6

= 1 part + 28 + 6

= 1 part + 34

Seema’s age in 6 years  
will also be:

 3 times Jo’s age.:

1 part +6

1 part +6

1 part +6

= 3(1 part + 6)

= 3 parts + 18

Therefore, Seema’s age in the future is both:

2.	� In 6 years: Seema will be 3 times as old 
as Jo

3.	� How old are Jo and Seema now?

1 part + 34 	 and 	 3 parts + 18

In other words, 

1 part + 34 	 = 	 3 parts + 18

Now, to solve the problem, let 1 part = x:

x + 34 		  = 	 3x + 18

x – x + 34 	 = 	 3x – x +18

34 		  = 	 2x + 18

34 – 18 		 = 	 2x + 18 – 18

16 		  = 	 2x

16/2 		  = 	 2x/2

8 		  = 	 x

Therefore, x or 1 part = 8

Looking back at our bar models for their 

current ages: 

Jo Seema

1 part
= 8

1 part
= 8

+ 28

ANSWER: Jo must currently be 8-years 
old, and Seema must currently be 8 years 
+ 28 which is 36 years old.

Figure 3. Example of an ‘age’ word 
problem illustrating interacting elements 
which impact on working memory

Explicit teaching of isolated sub-skills is 
also necessary, before combining them 
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in complex word problems such as the 
one above (Pollock et al, 2002). In this 
example, students would need to have 
consolidated numerous pre-requisite skills 
of: reading comprehension to accurately 
interpret the mathematical problem; 
breaking word problems into manageable 
components, representing word problems 
spatially; using the spatial representation 
to formulate an algebraic equation, and 
solving for ‘x’ using algebra. 

b. Working Memory duration 

What does the science and the research 
say? 

If new information is not rehearsed, then 
it can be lost within about 30 seconds 
(Atkinson & Shiffrin, 1971). As such, 
teacher prompting of verbal, written, 
and gestural responses, immediately 
and regularly has been found to improve 
academic and behavioural outcomes in 
both mainstream and special education 
settings (Macsuga-Gage & Simonsen, 
2015)

What does it look like in the classroom?

For example, in an explicit teaching session 
on aspects of number, prompting students 
to ‘state’ the number, use thumbs up/
down or ‘bunny ears’ (using fingers to 
demonstrate a quantity), and write on 
mini-whiteboards throughout the session, 
fosters the transfer of information into 
long-term memory and allows teachers 
to detect misconceptions and adapt 
instruction accordingly.

c. Developing fluency 

What does the science say?

Practice is necessary to consolidate a 
new schema, allowing the learner to 
apply knowledge successfully in a variety 
of situations. Over time, ‘automation’ 
reduces the amount of cognitive resources 
necessary to process the same information, 
freeing up working memory to engage with 
new information. This is why achieving 
fluency in lower-order mathematical skills 
is essential for tackling higher-order or 
more complex mathematical problems 
(Hatten-Roberts, 2023). 

What is the research? 

In terms of schema acquisition, practice 
makes permanent (Fisher & Frey, 2021). 

In a classic sight-word vocabulary study 
by Gates (1931), students in the ‘average 
IQ’ category required 35 exposures 
before reaching the automatic recognition 
level. Even students in the ‘significantly 
above average IQ’ category required 20 
exposures, while students in the ‘extremely 
low IQ range’ required up to 55 exposures. 
This research illustrates just how many 
repetitions may be required for students to 
develop fluency in a skill.

Findings of a meta-analysis of mathematics 
basic-fact fluency interventions (Poncy 
et al, 2007), revealed that teachers did 
not provide sufficient opportunities for 
students to become fluent in mathematics 
skills, and that only few textbooks provided 
adequate practice activities. It is therefore 
not surprising that only around 18% 
of 12-year-olds used direct retrieval of 
multiplication facts according to a study by 
Steel & Funnell (2001), and the percentage 
may be even lower today (Walker, 2021). 

What does it look like in the classroom?

Although teachers are not responsible 
for all the possible repetitions a student 
requires to develop automaticity in a 
mathematical skill, consideration needs 
to be given as to how to optimise practice 
within schools and the classroom setting. 

Integrated whole-school mathematics 
curriculum with intermittent refreshers 
of knowledge and concepts within and 
across year levels, provides fertile 
ground for consolidating understanding 
and developing fluency in all aspects of 
mathematics. Furthermore, revisiting fewer 
concepts more often, rather than covering 
more concepts fewer times is necessary to 
secure learning. As Turner (2023, p. 79) 
has aptly stated: ‘If we do not know what 
to prioritise in our efforts, then we will be 
attempting to secure everything and in 
doing so, likely secure nothing’. 

Secondly, fluency in addition and 
subtraction number facts and multiplication 
tables facilitates a student’s ability to grasp 
more complex concepts such as fractions, 
decimals and percentages. As such, 
increasing automaticity in mathematical 
facts and explicitly teaching students when 
to apply them is an essential foundation for 
numeracy (Hatten-Roberts, 2023). 
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Some specific strategies to improve mathematical fluency

	Daily fluency practice: numerous 
schools are incorporating 10 minutes 
of daily ‘fluency practice’ as part 
of mathematics classes, in order 
to increase the automaticity of 
essential skills such as number facts 
and multiplication tables. Retrieval 
practice or retrieving material to be 
learned from memory with pauses 
before feedback, for example, using 
‘flashcards’, has been found to be 
a more effective way of achieving 
short- and long-term fluency benefits 
compared to strategies such as 
chanting multiplication facts out aloud 
(Ophius-Cox et al, 2023). Not only 
has repeated retrieval practice been 
found to be less prone to interference, 
but it reduces cognitive processing 
load leading to quicker automatisation 
(Pajkossy et al, 2019).

	Teacher-directed unison responding: 
replacing the ‘hands up’ technique 
with ‘teacher-directed unison 
responding’ when reviewing basic 
facts or concepts, ensures that the 
entire class is being prompted to 
respond, rather than a single student 
at any one time. For example, the 
use of gestures such as thumbs up 
or down, mini-whiteboards, response 
cards, technology or choral responding 
significantly increases the number of 
repetitions necessary for conceptual 

change in long-term memory of 
all students (Macsuga-Gage & 
Simonsen, 2015). So, in a class 
of 25 students, it is not only more 
equitable to use teacher-directed 
unison responding, but a teacher 
can elicit 25 responses as opposed 
to only one response. Furthermore, 
Macsuga-Gage et al (2015) reported 
that 3-5 responses per minute for 
oral responses, and one response per 
minute for written responses, yielded 
greatest improvements in academic 
achievement and behaviour. 

	Use of evidence-informed adaptive 
technology: evidence-informed 
adaptive mathematics computer 
games which are integrated with 
explicit in-class instruction, can be 
used to boost the amount of practice 
students receive in specific skills. Not 
only is this enjoyable for students, but 
students who require more practice 
have the opportunity to play the 
game more often, thereby reducing 
variability in the classroom, making it 
easier for teachers to optimise Tier 1 
instruction (see Gardes et al, 2022; 
Ramani et al, 2019). It is important to 
note, however, that such technology 
should be carefully selected and 
should not be used as a substitute 
for explicit instruction, but in a 
supplementary manner. 

d. Working memory depletion

What does the science and the research 
say? 

Given the large number of repetitions 
required to reach automaticity, it would be 
convenient to be able to provide ‘massed’ 
opportunities to practise a skill before 
moving onto the next skill. However, 
consideration needs to be given to working 
memory depletion, which occurs following 
extensive mental effort, resulting in 
reduced performance (Chen et al, 2017), 
until the passing of a recovery phase, after 
which the individual is ready to expend 
mental effort practising the skill again. 

What does it look like in the classroom?

This has two main implications. Firstly, the 
teaching approach needs to be attuned to 
the amount of time, the time of day, and 
pace students can reasonably engage with 
the content and teachers may need to ‘shift 
gears’ accordingly. A second implication of 
working memory depletion is that material 
which is revisited in shorter bursts across 
time between learning episodes, namely, 
‘spaced practice’, is likely to yield better 
results than content which is presented in 
a block (Chen et al, 2017) before moving 
onto the next unit as so often is the case in 
mathematics classrooms (Hatten-Roberts 
2023). 
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4. Building and refining schemas

Building schemas: the concrete pictorial-abstract approach

Figure 4. Using the concrete-pictorial-abstract approach to build schemas: multiple ways of 
representing 5 + 2 = 7 

Concrete Representational Abstract

5 + 2 = 7

What does the science say?

As previously outlined, retrieval is the 
process whereby prior knowledge from 
long-term memory is ‘linked’ with incoming 
information in working memory. If there 
is only limited prior knowledge in long-
term memory, such as when incoming 
information is too unfamiliar, the learner 
is likely to become overwhelmed, working 
memory capacity will be exceeded, and 
learning will be compromised.

What does the research say?

The concrete-pictorial-abstract approach 
as presented in Figure 4 is a research-
validated way of scaffolding learning, 
or schema development (Miller & 
Hudson, 2007; Agrawal & Morin, 2016; 
Carbonneau et al, 2016). Problems of 
limited prior knowledge are overcome 
by using representations which are more 
familiar and gradually moving towards 
representations which are less familiar. 

What does it look like in the classroom?

According to Krasa et al (2022), body 
parts such as fingers are the most familiar 
representations for young children and 
are a versatile starting point in assisting 
children to count using one-to-one 
correspondence, calculate, and understand 
the base-10 system. Concrete objects are 
also used in the early stages of schema 
acquisition, before moving towards two-

dimensional representations and abstract 
concepts such as numbers and symbols. 

Ideally, different representations can be 
presented spatially contiguously, two at a 
time, but it is important that the correct 
order is used, and stages should not be 
skipped. For example, it is often helpful to 
present concrete representations beside 
pictorial presentations, then move to 
pictorial beside abstract representations, 
and finally, purely abstract representations 
as students develop expertise. 

Furthermore, teachers need to support 
children to move through the phases as 
fast as possible, but as slow as necessary 
depending on student needs, and note 
that student learning can be impeded by 
insisting a student perseveres with the 
concrete phase for example, when two-
dimensional representations or the use of 
abstract symbols such as numbers would 
suffice. 

Finally, the use of concrete or virtual 
manipulatives is often relegated to 
young children or learners experiencing 
difficulties. However, given that 
mathematics is inherently visuo-spatial, 
and not merely an extension of literacy, 
the use of concrete or virtual objects and 
visuo-spatial representations is justified 
at every level when students of all ages 
are acquiring new skills (Carbonneau et al, 
2013; Turner, 2023). 
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Refining schemas

What does the science and the research 
say?

Feedback needs to be timely, specific, 
understandable and actionable, for 
students to be able to hone their pre-
existing schemas and master content 
(Fisher & Frey, 2021), and the more often 
this happens, the quicker learning can 
occur. 

What does it look like in the classroom?

Children’s knowledge becomes increasingly 
nuanced as they learn to categorise 
information and refine their pre-existing 
schemas. The use of ‘examples’ and 
‘non-examples’ and feedback is one way 
this can be achieved (Miller & Hudson, 
2007). Consider the development of the 
quadrilateral schema presented in Figure 
2. Initially, children learn about the basic 
property of quadrilaterals having four sides 
by comparing ‘examples’ of regular shapes 
such as squares and rectangles with ‘non-
examples’, such as triangles and circles. 

The schema becomes further instantiated 
when students learn about the concept of 
both pairs of opposite sides being ‘parallel’: 
parallelograms, rectangles and squares fit 
within this category but not trapezoids. 
Then, as time goes on, students learn 
about the property of equal angles. So, 
although parallelograms, rectangles and 
squares have parallel sides, parallelograms 
do not have equal angles. Using schematics 
such as Figure 2, providing feedback 
throughout the process, and addressing 
misconceptions along the way, facilitates 
efficient and accurate development of 
schemas and promotes learning.

Teachers of mathematics also need to 
distinguish between ‘mistakes’ and ‘errors’ 
or misconceptions when providing feedback 
(Archer & Hughes 2010). Consider the 
following example:

What is 101 plus 9?

Student A: 111 	 Mistake

Student B: 10010	� Error which 
demonstrates a 
misconception 

Student C: 110 	 Correct

Here, Student A has made a mistake 
adding the numbers together, but clearly 
has a grasp of place value given that a 
three-digit answer has been provided. 
In this case, simple correction would be 
appropriate. On the other hand, Student 
B’s answer illustrates misunderstanding at 
a deeper level, namely, an ‘error’. In cases 
like these, teachers should identify the 
source of misunderstanding, and reteach 
the mathematical concept. Student B’s 
answer illustrates they are struggling with 
place value, and as such, explicit teaching 
with a concrete-pictorial-abstract approach 
using base-10 blocks would be likely to 
yield best results.

5. �Accommodations and 
modifications

If cognitive hardware differs significantly 
from average, this may incur additional 
cognitive load and needs to be accounted 
for in instruction. Therefore, in the 
context of evidence-based and robust 
Tier 1 instruction, teachers may need 
to make classroom accommodations or 
modifications to schoolwork to cater for 
diverse needs. 
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Consideration #2. �Our cognitive software — attributes 
of the knowledge being acquired 

OUR COGNITIVE SOFTWARE IN MATHEMATICS

Different types of knowledge give rise to different types of skills:

BIOLOGICALLY PRIMARY 
KNOWLEDGE

Possessed by all humans irrespective of 
culture.

Acquired automatically and instinctively.

Immersion is sufficient because BPK 
develops naturally. 

Form the foundations for acquiring BSK 
and domain-specific skills. 

BIOLOGICALLY SECONDARY 
KNOWLEDGE

Culturally-specific – adapted to a particular 
context. 

Effortful and requires practice to reach 
proficiency on behalf of the learner.

Explicit instruction required by the teacher/
instructor. 

Depends on BPK and domain-general skills 
for acquisition.

GIVE RISE TO -> 

DOMAIN-GENERAL SKILLS:

The capacity to acquire language, learn, 
think, and solve problems. 

Apply across subject areas.

‘Blunt instruments’: e.g. being able to 
judge which group has more out of two 
groups of objects (number sense)

Examples: Ability to acquire 
mathematical vocabulary, number sense, 
memory, rapid automatic naming ability, 
critical thinking skills, trial-and-error to 
solve difficult problems, spatial skills e.g. 
navigating towards a food source.

DOMAIN-SPECIFIC SKILLS:

Are unique to a particular field of 
knowledge such as mathematics, English, 
art and science.

Specific to subject areas.

Precise: e.g. being able to determine 
exactly how many objects there are 
(counting)

Examples: All mathematical strands e.g. 
Number, Algebra, Measurement, Geometry, 
Statistics, Probability.  
Specific examples: mathematical 
vocabulary, calculation, order of operations, 
using Pythagoras’ Theorem to solve for the 
length of the side of a right-angled triangle, 
interpreting graphs, reading a map.

Table 1. Our cognitive software in mathematics
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1. �Our cognitive software in 
mathematics: different types 
of knowledge give rise to 
different types of skills

Cognitive hardware affords humans the 
ability to acquire knowledge, or ‘cognitive 
software’, which can be divided into 
Biologically Primary Knowledge (BPK) 
and Biologically Secondary Knowledge 
(BSK) (Geary, 1995, 2019; Sweller et al, 
2019). As can be seen from Table 1, BPK is 
acquired almost instinctively by all humans 
and is automatically acquired, whereas BSK 
is adapted to different cultural contexts and 
must be explicitly taught, requiring effort 
and practice to reach proficiency. 

These types of knowledge give rise to 
domain-general and domain-specific 
skills. Domain-general skills, which arise 
mainly out of BPK, could be considered 
‘blunt instruments’ because they are skills 
which are indispensable to learning in 
general and are imprecise in nature. On 
the other hand, domain-specific skills arise 
mainly out of BSK and relate to particular 
branches of knowledge, so are therefore 
more precise in nature. For example, the 
ability to acquire mathematical language 
is a domain-general skill, but using 
mathematical vocabulary is domain-
specific. 

EXAMPLE: Number sense

A pertinent example of BPK in the 
quantitative strand of numeracy and 
mathematics is ‘number sense’. Number 
sense relates to the imprecise ‘domain-
general’ ability to discriminate between 
quantities, or know which is more or 
less, larger or smaller, and is believed to 
be connected with a primitive cognitive 
structure known as the ‘Approximate 
Number System’ (ANS) present in all 
animals, including humans (Pinel et 
al,2004). Evolutionarily, it is likely to be an 
adaptation to detecting larger food sources, 
for example (Mandelbaum, 2013). 

Research has confirmed that number 
sense is present in infancy, before an 
understanding of symbolic number 
knowledge is actually developed (Cantlon 
et al, 2006). In this way, it could be best 
understood as ‘quantity sense’. As a child 
grows and formal schooling commences, 
culturally-specific verbal number 

names and visual symbols (numbers) 
(BSK) are mapped onto imprecise ANS 
representations of quantity (see Figure 
5), in much the same way as orthographic 
mapping of letters and sounds occurs 
(Goebel et al, 2014). In mathematics 
and numeracy, this process is known as 
‘transcoding’ (Dahaene & Cohen, 1995; 
Krasa et al, 2022). 

Verbal number/
name/sequence 

e.g. 'threee'

*** 3

Figure 5. The process of transcoding

Foundations in biologically-primary number 
sense interact with BSK throughout 
schooling, allowing individuals to make 
judgements about quantities, understand 
the order of numbers, recognise 
unreasonable results, use multiple 
strategies when mentally computing, and 
select appropriate representations during 
problem-solving (Kalchman et al, 2001).
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Three myths about biologically primary and biologically second-
ary knowledge 

Myth 1: Biologically Primary Knowledge/
domain-general skills can be taught 

Whether or not BPK/domain-general 
skills, such as general problem-solving 
strategies or critical thinking skills, can 
be taught and effectively applied by 
learners to different contexts, has been 
hotly contested over recent decades. The 
acquisition of domain-general ‘critical 
thinking’ skills are arguably only possible 
if a person possesses a ‘database’ of 
domain-specific knowledge in their long-
term memory. 

For example, imagine you possess only 
minimal mechanical knowledge, and 
your car breaks down. Even if you had 
a domain-general trouble-shooting 
technique, how would you pinpoint the 
cause without a significant amount 
of domain-specific knowledge about 
mechanics? The same can be said for 
revising schoolwork. In a problem which 
involves dividing fractions, how can a 
student detect errors in their working 
without a robust, pre-existing, domain-
specific database of knowledge from 
which to draw? Only via constant and 
preferably immediate feedback about 
their accuracy, can the student build 
a schema in long-term memory which 
ultimately enables them to detect their 
own errors.

As it currently stands, research in 
mathematics and numeracy attest to 

the difficulty in using domain-general 
cognitive skills to enhance proficiency 
in specific domains. For example, 
a study by Honore & Noel (2017) 
found that although domain-general 
visuospatial working memory training 
(CogMed) improved this ability, the 
training did not significantly improve 
verbal working memory, counting, 
magnitude comparison or addition. 
Furthermore, Fuchs et al (2019) argue 
for domain-specific mathematical 
language instruction in preference to 
domain-general language training for 
improving mathematical knowledge and 
development. The research suggests, 
therefore, that the best way to build BSK 
and improve competency in a skill, is to 
be explicitly taught how to perform the 
specific skill, and practise until proficient.

Myth 2: Biologically Secondary 
Knowledge/domain-specific skills can be 
learned via immersion 

A second myth concerning the different 
types of knowledge, is that Biologically 
Secondary Knowledge (BSK) and 
domain-specific skills can be learned 
through ‘immersion’. The science 
of mathematics elucidates why this 
approach is unlikely to be successful. 
Below is a continuum of some different 
types of domain-specific mathematical 
tasks used in Australian classrooms, and 
[some] of their associated sub-skills. 



16

Table 2. �Foundational to complex tasks in mathematics. Acquisition of each skill 
depends on proficiency in all skills before it. 

As can be seen from Table 2, tasks range 
from foundational tasks such as the 
development of core number skills, to 
real-world ‘rich’ tasks which involve a 
high degree of pre-requisite knowledge, 
executive functioning, and sophisticated 
reasoning. From the science of 
mathematics perspective, the capacity 
of students to perform real-world ‘rich’ 
numeracy tasks may be what teachers 
are aiming for, but the approach is 
destined to fail if pre-requisite skills are 
not properly consolidated first, because 
of the inevitable cognitive overload it will 
induce. 

Intrinsic cognitive load is the complexity 
of a task relative to the knowledge of 
the person processing the information 
(Sweller et al, 2019). ‘Complexity’ can be 
understood as the number of interacting 
elements for the person solving the 
problem. For example, solving 25 + 
3 =?, is likely to be quite simple for a 
12 year-old, but extremely difficult for 
an early Foundation student, because 
they may only know numbers to 10, 
be unfamiliar with the symbols ‘+’ and 

‘=’, and not have a strategy to add 3 
and 25. In other words, there are too 
many interacting elements overloading 
working memory, prohibiting them from 
connecting this information to what they 
already know about numbers. This is 
why an ‘immersion’ approach for the 
Foundation student who has limited BSK 
is unlikely to be successful. 

From a teaching perspective, intrinsic 
cognitive load can only be changed by: 
a) changing what needs to be learned, 
or b) changing the expertise of the 
learner (Sweller et al, 2019). Therefore, 
for students to be able to effectively 
build their BSK and learn new material, 
tasks need to be pitched to their point 
of need, within grasp — just beyond 
what they already know. And, via explicit 
teaching of domain-specific skills with 
a gradual release of responsibility and 
opportunities to practise, students will 
be able to develop greater expertise, 
enabling them to tackle increasingly 
sophisticated mathematical problems 
(Archer & Hughes, 2010; Rosenshine, 
2012; Fisher and Frey, 2021). 

1. Foundational Tasks 2. Basic 
Computation 
Tasks

3.Simple Word 
Problems 
[Conditions 
of certainty. 
No irrelevant 
information 
present]

4. Complex 
Word 
Problems 
[Conditions 
of uncertainty 
with irrelevant 
information]

5. Real-World 
‘Rich’ Tasks 
[Proficiency 
required in a broad 
number of skills]

Core number skills (Aunio 
& Rasanen, 2016) including 
1) symbolic and non-
symbolic number sense (2) 
understanding mathematical 
relations (logic, operations, 
place-value and the base-
10 system) (3) counting 
(number-symbols, number 
word-sequence, determining 
the quantity with concrete 
objects) (4) basic arithmetic 
skills (number bonds) 

Spatial skills (Krasa et al. 
2022)

Computational 
proficiency: 
Applying 
operations 
using symbols 
(+-X?=) and 
set-based 
reasoning 
skills. (Aunio 
& Rasenen, 
2016)

Decoding 
proficiency.

Reading 
comprehension 
proficiency. 

Ability to 
represent 
information. 
diagramattically.

Strategies 
to deal with 
conditions of 
uncertainty such 
as estimation 
and prediction 
e.g. probability 
& statistics.

Sifting required 
as irrelevant 
information 
present.

Ability to:

Break down the task 
into components 
(organisation).

Solve each 
component.

Solve overall problem 
using sophisticated 
reasoning skills.

Plan ahead and 
manage time 
efficiently to ensure 
completed on time.

Increasing number of interacting elements.
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Myth 3: student motivation to acquire 
Biologically Secondary Knowledge can be 
bolstered via rich real-world collaborative 
tasks 

Another implication of acquiring 
Biologically Secondary Knowledge 
(BSK), is that persistence and effort 
are required on behalf of the learner. 
Therefore, motivating students and 
maintaining engagement is one, if not 
the main challenge for teachers (Alipour 
et al, 2023). The topic of motivation 
is broad and beyond the scope of this 
paper, however, an important point from 
the science of mathematics perspective 
is pertinent here: setting students up for 
success by building competency is the 
best way to facilitate engagement and 
motivation to acquire mathematical BSK 
and domain-specific skills (Fisher & Frey 
2021). 

To bolster engagement, many teachers 
add complexity to tasks without meaning 

to, for example, via ‘immersion’ teaching 
methods highlighted in Myth 2, such as 
rich real-world collaborative tasks for 
students who have not consolidated pre-
requisite skills. However, as previously 
demonstrated, for ill-equipped students, 
such tasks are likely to overload working 
memories, create anxiety, feed into poor 
mathematical self-concepts and reduce 
performance. 

Within the group context, students 
who have capacity to tackle such tasks 
will inevitably carry the weight of 
responsibility, while others are only able 
to make minimal contributions, resulting 
in inequities. On the other hand, when 
teachers use evidence-based approaches 
such as those outlined previously, 
students are not only able to hone their 
pre-existing schemas towards mastery 
and success, but they are more likely 
to remain motivated (Archer & Hughes, 
2010; Rosenshine, 2012; Fisher and 
Frey, 2021). 

Consideration #3. �Managing cognitive load 
in mathematics instruction 

1. �What does the science and 
research say about the aim 
of instruction?

From a Science of Mathematics 
perspective, the aim of instruction for a 
given task is to support students to move 
from a more primitive understanding, or 
initial state, towards the expert ‘schema’ 
of the mathematics teacher, or goal state. 
As such, teachers first need to know 
more about students’ current or pre-
existing conceptual knowledge, which 
they ascertain via formal and informal 
monitoring and assessment. Once the 
‘novice’ initial state, and the ‘expert’ goal 
states have been established, teachers are 
able to develop a strategy for closing the 
gap between the two states. 

Starting at students’ points of need, 
teachers are able to manage students’ 
working-memory load by breaking the 
task into smaller components, and guiding 
students step-by-step towards the goal or 
‘expert’ state using a gradual release of 
responsibility otherwise known as the ‘I Do, 
We Do, You Do’ Approach (Archer & Hughes 
2010, Rosenshine 2012). Throughout 
this process, teachers track students’ 
understanding and respond dynamically 
to their needs, ironing out misconceptions 
and providing feedback along the way. This 
enables students to consistently hone their 
pre-existing schemas until finally, their 
schemas approximate the ‘expert’ goal 
state. 
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2. �Teaching approaches in 
mathematics

a. �Explicit-direct instruction versus 
inquiry debate

A major controversy in mathematics 
relates to whether explicit-direct 
instructional approaches or minimally-
guided inquiry approaches should be the 
method of choice. This is in part because 
of the challenge teachers face when 
trying to engage students to acquire 
Biologically Secondary Knowledge, such 
as mathematical knowledge — which 
requires effort and persistence on behalf 
of the learner (Geary, 1995, 2019) — and 
the common misconception held that 
explicit instruction is ‘teacher-centred’ and 
therefore ‘not motivating’ for students 
(Archer & Hughes, 2010). 

However, the approach adopted depends 
on the learner’s level of expertise. As 
previously discussed, learner expertise 
in a specific skill relates to the degree of 
element interactivity of the task relative to 
the knowledge of the learner (Sweller et 
al, 2019). So, if the element interactivity 
is high for a learner, then explicit-direct 
instructional approaches, such as those 
which are fully explained and modelled 
before learners are asked to apply the 
concepts or procedures, are preferable. 
This is because working memory capacity 
can be exceeded if the task has too many 
unfamiliar interacting elements (Sweller, 
2021). 

Conversely, once the learner has developed 
a higher degree of expertise and element 
interactivity is lower, minimally-guided 
approaches are preferable. To use a simple 
metaphor, we would not teach a novice to 
ride a bicycle using a road bike, nor would 
we require an elite cyclist to use a bike 
with training wheels.

Notably, as previously discussed, just as 
the use of minimally-guided ‘immersion’ 
approaches for novices can be deleterious 
to learning, so too can the use of explicit-
direct instructional approaches with 
students who have developed expertise. As 
Sweller et al (2024) have demonstrated:

“… Multiple experiments … overwhelmingly 
indicate that while high element 
interactivity information requires explicit 
instruction before problem-solving 

practice (Ashman et al, 2020), as element 
interactivity decreases, the advantage 
of explicit instruction decreases and 
may eventually reverse, resulting in the 
expertise reversal effect (Chen, Kalyuga, & 
Sweller, 2017; Kalyuga et al, 2003)” (p.4)

It also follows that explicit-instructional 
approaches would be the method of choice 
most of the time, because educators 
are teaching new skills and knowledge 
to individuals who are novices, namely, 
students. But what are the specific phases 
students must move through to transition 
from being novice mathematicians to 
expertly numerate, and how can teachers 
support this transformation?

b. Teaching concepts and procedures

Pendulum-swings in the last 40 years 
have gone from almost pure emphasis on 
procedural knowledge and rote-learning 
to the detriment of understanding, 
to conceptual understanding without 
building fluency and teaching procedures. 
This carries significant and sometimes 
detrimental implications for mathematical 
performance of students at national levels 
(Hartman et al, 2023), and remains 
controversial (Hatten-Roberts 2023). 
Consistent with research in cognitive 
science, the US National Mathematics 
Advisory Panel (2008) indicated that there 
is a need for procedural fluency in the 
form of memorising maths facts, as well as 
conceptual understanding in mathematics. 

What does the research say?

Conceptual knowledge in mathematics, or 
the understanding of relationships among 
ideas, sometimes referred to as the ‘big 
ideas of mathematics’ (Charles, 2005), 
is the ‘glue’ that illuminates relationships 
and facilitates deep understanding. As 
such, it provides cohesion to what could 
otherwise be taught as a set of disparate 
and disconnected ideas to be rote-learned. 
The importance of building conceptual 
knowledge cannot be understated because 
it is the key for learners to be able to move 
beyond ‘mathematical procedures’ towards 
true numeracy (Miller & Hudson, 2007). 

On the other hand, procedural knowledge 
involves knowing ‘formulas’ and ‘standard 
algorithms’, or the sequence to be 
followed when a problem has multiple 
steps, and proficiency in number facts 
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(Miller & Hudson, 2007; US Mathematics 
Advisory Panel, 2008). Having ease and 
accuracy with procedures facilitates greater 
efficiency and allows the cognitive load to 
be distributed more evenly across multiple 
steps, leading to a reduction of load at 
each step, thus facilitating learning and 
more accurate responses overall. 

Both the procedure and the conceptual 
underpinnings of problems facilitate 
mathematical competency and numeracy, 
as opposed to a purely mathematical 
(procedural) approach. Figure 6 illustrates 
this in greater detail.

Tens Ones

5 7

– 3 3

2 4

Tens Ones

5 2

– 2 3

2 9

Tens Ones

Tens Ones

What does it look like in the classroom?

As previously discussed, the vast majority 
of maths to be learned in formal schooling 
is Biologically Secondary Knowledge 
(BSK), which requires effort to learn and 
is subject to the limitations of working 
memory capacity. As such, it needs to be 
carefully sequenced and explicitly taught 
and cannot be acquired naturally through 
immersion. Conceptual and procedural 
knowledge are complementary and can and 
should be taught together. To illustrate this, 
consider the following example of 2-digit 
subtraction: 

The vertical subtraction problem is 
illustrated on the left side of Figure 6. The 
base-10 blocks to the right of the diagram 
represent conceptually what is happening 
in terms of quantities. In this case, 
students could learn the procedure without 

the base-10 blocks, and, whenever faced 
with solving similar problems, could apply 
the procedure and obtain a correct answer. 

However, consider what would happen 
when the subtraction problem becomes 
more complex, for example, when 
regrouping is required such that a digit in 
the ‘minuend’ (number being subtracted 
from), was smaller than the corresponding 
digit in the subtrahend (the number to be 
subtracted) as shown in Figure 7. In this 
case, application of the original formula 
would no longer work. Certainly, we could 
teach a new procedure, but we would be 
more likely to get extra ‘mileage’ if we 
represented this information conceptually 
also. Once understanding was established, 
the scaffold of using the representation 
of base-10 blocks could be removed, and 
students would then be able to rely on the 
procedure which is more efficient. 

 Figure 7. Two-digit subtraction with regrouping, with abstract and pictorial representations

Not enough ones?  
Swap 1 ten for 10 ones

Figure 6. Basic two-digit subtraction with abstract and pictorial representations

4 1
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c. �An instructional hierarchy for 
mathematics

Haring & Eaton’s (1978) instructional 
hierarchy illustrates how teachers can 
support students to move from novices 
to experts in mathematics. Notably, the 
goal is to move as fast as one can but 
as slow as one must through the phases 
of instruction which begin with more 
explicit teaching approaches and move 
towards minimally-guided approaches as 
learners develop expertise. As such, the 

phases are vehicles and not destinations 
in themselves, and teachers need to 
carefully plan each stage in instruction, so 
as to equip students to grapple with more 
complex problems in the adaptation phase. 

It is also important to note that learners 
may have pre-requisite skills but be unable 
to recognise the precise contexts in which 
to apply them. Explicit teaching about 
when to apply certain skills, and how to 
bring isolated skills together is therefore 
often necessary. 

Table 3. �Stages of skill acquisition from novice to expert in mathematics (adapted from 
Haring & Eaton, 1978; Sweller et al., 2024) 

HARING & EATON’S INSTRUCTIONAL HIERARCHY:

1. ACQUISITION 
PHASE:

2. FLUENCY PHASE: 3. GENERALISATION 
PHASE:

4. ADAPTATION PHASE:

The student learns the 
purpose and utility of 
the concept, relevant 
mathematical language, 
concepts and procedures 
and is able to apply the 
skill but is not yet fluent. 

Via practice and 
rehearsal, the student 
performs the skill 
fluently. 

The student performs 
the skill across situations 
or settings. 

The student confronts novel 
task demands that require 
the student to adapt a 
current skill to meet new 
requirements. 

Novice--------------------------------------------------------------------------------------------------------------- >Expert

TASKS:High element interactivity------------------------------------------------------------- >Low element interactivity

Explicit Instruction-------------------------------------------------------------------------->Minimally-guided instruction

The acquisition phase:

In the acquisition phase, teachers are likely 
to capture the largest number of learners 
if they use explicit/direct instructional 
approaches because, as previously 
highlighted, most students are learning 
new skills, and element interactivity is 
high. Thus, for any type of task which 
has never been previously encountered, 
explicit teaching will be required whether 
the problem is foundational in nature, or a 
complex word problem. 

The critical first step when introducing 
any new concept is to state the purpose 
and utility of the concept. This allows 
students to connect new information to 
their previous knowledge and engage in 
the learning. Notably, explicit instruction in 
relevant mathematical language, concepts 

and procedures, should also be introduced 
in this phase and revisited throughout the 
different phases of the learning process 
(Miller & Hudson, 2007; Powell et al, 2024; 
Turan & De Smedt, 2023).

EXAMPLE: teaching centimetres as a 
unit of length.

Purpose and utility of the concept: why 
units of length such as centimetres are 
useful can be illustrated with objects 
which can be measured in centimetres 
such as the length of a book or the side 
of a desk. 

Language and representations: 
instruction needs to include relevant 
language such as ‘measurement’, 
‘length’, ‘units’, and ‘centimetre’. In 
terms of representations, teachers can 
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demonstrate the length of a centimetre 
using concrete objects such as a staple, 
or 2D representations such as the 
distance between two points on a ruler.

Concepts and procedures: students 
need to be introduced to rulers and 
observe that the points on the ruler 
are ‘equidistant’. Conceptually, they 
need to understand that it is the 
spaces between points on the ruler 
which represent units (quantities) of 
length, not the points themselves. 
They also need to be explicitly taught 
the procedure of how to use a ruler by 
lining up the ‘0’ (not the 1) at one end 
of the object, and how to identify the 
number on the ruler which aligns with 
the other end of the object. 

The fluency phase:

It is not enough to acquire a skill and 
then move onto learning the next skill. 
As we have learned, students require a 
large number of repetitions to achieve 
automaticity or fluency in any mathematical 
skill ranging from mathematical facts to 
problem-solving. Once the student can 
perform the task consistently and to a high 
level of accuracy, they are ready to move 
to the generalisation phase. 

Taking the previous example of ‘teaching 
centimetres as a unit of length’, the fluency 
phase would include practice in using the 
correct mathematical language, proficiency 
in being able to identify the length of 
objects in centimetres and to measure 
them to a high degree of accuracy. 
Alternatively, taking the example of basic 
two-digit subtraction in Figure 6, the 
fluency phase would include practice with 
the same types of problems using different 
digits until the student has acquired 
accuracy of at least 80% (Rosenshine, 
2012) before moving to more complex 
problems such as two-digit subtraction with 
regrouping, highlighted in Figure 7. 

The generalisation phase:

Once fluent, students are ready to 
generalise (third phase) the skill to 
similar problems or related concepts. 
Remembering the need to manage 
learners’ cognitive load, we would ideally 
provide a change in only one element at a 
time and develop fluency before moving on 
at each level. This could include changing 

an element of the problem, changing the 
number range, changing the setting or 
changing the situation. 

For example, to assist students to 
generalise their understanding of 
‘centimetres’ and ‘units’ more broadly, we 
might introduce them to the relationship 
between centimetres and metres. Drawing 
on their previous knowledge of units, we 
might highlight that centimetres are too 
short in length to measure larger objects 
such as the height of a door or the distance 
between two classrooms, which is why 
‘metres’ can be useful. Alternatively, if we 
take the previous example highlighted in 
Figure 6 of the two-digit subtraction with 
regrouping, we might change one element 
of the problem, such as using a three-digit 
minuend, to assist students to generalise.

Teachers also need to address 
misconceptions arising from 
‘overgeneralisations’. For example, students 
may falsely assume when converting 
centimetres to metres that the answer 
will be more because metres are longer 
than centimetres. So even though 200 
centimetres = 2 metres, students may 
make the error that 2cm = 200m. As such, 
students may need to be explicitly taught 
that if the unit is larger, fewer are needed 
to make up a certain length.

Once students have demonstrated the 
ability to consistently and accurately 
generalise the skill to a number of different 
contexts, they are ready to move to the 
adaptation phase.

The adaptation phase:

The adaptation phase is the final phase in 
which students have reached a high level 
of proficiency in pre-requisite skills and 
are equipped to adapt their current skill 
set to meet more complex task demands, 
such as problems where a combination 
of well-rehearsed isolated skills are 
required; problems containing irrelevant 
information; or problems under conditions 
of uncertainty, which are more reflective of 
daily life. 

In this stage, unlike previous stages, 
minimally-guided approaches are 
preferable because students are becoming 
expertly numerate. In the example of 
‘teaching centimetres as a unit of length’ 
which has been generalised to other 
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units including metres, millimetres and 
kilometres, a high level of competency 
would involve being able to select the 
appropriate unit of measurement, and 
measure and make conversions between 
units swiftly and accurately for the length/
distance required in real-world contexts. 

3. Instructional design

Much work has been done on the way 
instructional materials can be presented 
to maximise the transfer of information 
into long-term memory by minimising the 
adverse consequences of working memory 
limitations (Kissane et al, 2008). When 
material contains elements which do not 
directly contribute to, and take mental 
resources away from the instructional goal, 
it is known as ‘extraneous cognitive load’ 
(Sweller et al, 2019). A classic example is 
when pictures of ice cream and puppies 
are included in mathematics textbooks, 
which are irrelevant to the learning goals. 
As such, extraneous load, from a Science 
of Mathematics perspective, should be 
minimised (de Jong, 2010). Some of the 
key principles of instructional design are 
outlined below.

a. �Worked examples with guidance 
fading

What does the science say?

Worked examples with guidance fading 
provide a ‘model’ towards problem-solution 
via a series of steps rather than tasking 
the learner with generating many possible 
strategies and then finding the correct 
one through trial and error, which creates 
unnecessary cognitive load. By reducing 
the load on working memory, learning new 
skills in this way is both accelerated and 
more accurate. Notably, once the student 
has moved through the acquisition phase, 
they are then ready to move into the 
fluency phase, practising with conventional 
problems until the skill is automatic. 

What does it look like in the classroom?

Most mathematics textbooks contain 
a small number of worked examples 
intermingled with large quantities of 
conventional mathematics problems. 
However, this is not the most effective 
way of presenting information to 
optimise learning during the acquisition 
phase. Similar to the gradual release of 
responsibility approach, a worked example 
with guidance fading is a form of guided 
instruction which has been consistently 
shown to accelerate learning (Atkinson 
et al, 2003; Sweller & Cooper, 1985). 
As can be seen in Figure 8, the worked 
example becomes gradually replaced by a 
conventional problem as a learner acquires 
the skill.

Figure 8. Worked example with guidance fading: adding fractions with the same 
denominators
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Notably, providing immediate feedback 
following partially completed examples 
and conventional problems in the early 
stages of skill acquisition and including 
a conventional problem set of at least 
10 questions, is most likely to optimise 
schema acquisition.

Another important point here is that 
presenting the worked example before the 
conventional problem, rather than using a 
‘failure-driven/productive-failure’ approach 
in which the conventional problem is 
presented first, has been shown to produce 
better learning outcomes with less mental 
effort (Coppens et al, 2019). Besides the 
negative emotional impact when a learner 
is tasked with a conventional problem 
for which they have only a rudimentary 
schema (Fisher & Frey, 2021), priming with 
the worked example reduces the additional 
cognitive load incurred by the conventional 
problem in which a learner must generate 
a number of possible strategies and work 
out the most appropriate one through trial-
and-error, as previously outlined (Coppens 
et al, 2019).

b. �Reducing cognitive load through 
instructional design 

Presenting material in specific types of 
formats can reduce working memory load 
and streamline learning. Four key formats 
identified by research are outlined below: 

Split-attention occurs when material is 
presented in parts when it could otherwise 
be presented in a spatially contiguous 
(Ginns, 2006) or integrated fashion 
(Tarmizi & Sweller, 1988). As such, the 
learner is forced to expend cognitive 
resources integrating related pieces of 
information which could otherwise be spent 
understanding the concept. For example, 
a number track is a spatially contiguous 
format for learning to connect quantities 
with numerals (Figure 9). By presenting 
quantities and numerals together, the 
learner does not need to expend additional 
cognitive resources integrating two 
separate representations, namely, in the 
form of blocks on the one hand, and the 
number line on the other. Notably, once this 
knowledge is consolidated, and learners 
have established a ‘mental number line’, it 
may then be appropriate to move to using 
number lines instead of a number track.

Figure 9. The spatially contiguous format of the Stern Number Track is more effective than 
using separate ‘split’ representations of quantity in the form of blocks on the one hand, and 
a number line on the other

✗ SPLIT-FORMAT ✓ SPATIALLY CONTIGUOUS FORMAT
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Integrated formats also prevent split-
attention (Tarmizi & Sweller, 1988). As 
can be seen in the equation for a straight 

line in Figure 10, using annotation with 
the equation is likely to be more effective 
than a written explanation followed by the 
formula.

Reduced speed and accuracy in 
mathematical problem-solving from the 
redundancy effect occurs when the same 
information is presented in several different 
forms, when one or the other would 
suffice (Sweller et al, 2019). For example, 
contrary to common belief, presenting a 
number of different strategies to tackle a 
mathematical problem, especially in the 
early stages of knowledge acquisition, is 
likely to create additional working memory 
load and inhibit learning. Recalling the 
phases of the instructional hierarchy, 
developing fluency in one strategy, then 
generalising via the introduction of a new 
element/strategy, if necessary, later on 

✗ SPLIT-FORMAT ✓ INTEGRATED FORMAT

The equation for a straight line is a number 
sentence to show the value of variable 'x' in relation 
to variable 'y', at each point when plotting a straight 
line. 'm' is the gradient/slope: the bigger the value 
of m, the steeper the slope. 'b' is the y-intercept: 

where the line of the graph crosses the y-axis.

y=mx + b

The equation for a straight line: 

A number sentence to show the value of variable x 
in relation to variable y at each point when plotting a 

straight line.

y=mx + b

gradient/slope: 
the bigger the value 
of m, the steeper 
the slope.

y-intercept: 
where the line of 
the graph crosses 
the y-axis.

Figure 10. The integrated format is more effective than the split-format

would be likely to facilitate learning to a 
greater extent. 

Then, following the generalisation phase, 
a class discussion of different problem-
solving strategies such as in the form of 
‘number talks’, would be possible. The 
example below shows an example of 
redundancy in a multiplication problem. 
Here, a verbal explanation by the teacher 
accompanied by the problem steps and 
base-10 block representation would be 
sufficient, rendering the written explanation 
unnecessary and likely to cause extraneous 
cognitive load.
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Figure 11. The simplified format is more effective than the redundant format

✗ REDUNDANT-FORMAT ✓ SIMPLIFIED FORMAT

✗ NO SIGNALLING ✓ SIGNALLING

Find the value of the angle Θ in this right-angled triangle: Find the value of the angle Θ in this right-angled triangle:

2 3
x 2

6
4 0
4 6

2 3
x 2

6
4 0
4 6

First, make sure you have the question set out 
with your tens and units columns lined up. Start by 
looking at the units. We have 3 times 2, so we can 
write 6 on our first answer line. Then, we can move 
on to multiplying by the tens digit. We have 2 times 
2 - but remember, the two in our top line is the 
tens digit, so we really have 20 times 2, which is 
40, so we can write that in our second answer line. 
Finally, we need to add up our answer lines. We 
have 6 plus 40, so our answer is 46.

‘Signalling’ involves using different fonts 
and colours to highlight underlying patterns 
or codes, and has been found to be an 
effective way of directing learner’s attention 
towards key problem elements or structures, 

reducing cognitive load, and accelerating 
learning (Beege et al, 2021). In Figure 
12, the use of colour coding assists the 
learner to make connections between the 
trigonometric formulas and the diagram.

We have a value for the 
opposite side, and also the 
hypotenuse, so we use Sin:

	 Sin Θ	 =	Opposite
			   Hypotenuse

➝	Sin Θ	 =	12
			   13

➝	      Θ	 =	75◦

Answer: The angle Θ = 75◦

Sine: Opposite/Hypotenuse
Cosine: Adjacent/Hypotenuse
Tangent: Opposite/Adjacent

We have a value for the opposite 
side, and also the hypotenuse, 
so we use Sin:

	 Sin Θ	 =	Opposite
			   Hypotenuse

➝	Sin Θ	 =	12
			   13

➝	      Θ	 =	75◦

Answer: The angle Θ = 75◦

Figure 12. The format with signalling is more effective than the format without signalling

12 12
13 13

Θ Θ

Sine: Opposite/Hypotenuse
Cosine: Adjacent/Hypotenuse
Tangent: Opposite/Adjacent
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c. The modality effect

Research has revealed that working 
memory capacity can be effectively doubled 
by capitalising on both verbal/auditory and 
visual/spatial modalities when presenting 
information (Baddeley, 1992; Mousavi 
et al, 1995). This is why presenting a 
visual representation of a mathematical 
problem with a verbal explanation is an 
effective form of delivery. However, if the 
verbal explanation is both written and 
said, then the verbal modality is ‘doubled’ 
rendering one form redundant. This creates 
unnecessary extraneous cognitive load 
which can impede learning. 

Interestingly, the modality effect may also 
explain why using different representations 
of mathematical concepts in the concrete-
pictorial-abstract approach have been 
found to promote schema acquisition, as 
they tap into different modalities. On the 
other hand, we could predict that using 
multiple strategies in the early stages of 
learning a new skill may not be so because 
they are likely to tap into the same 
‘modality’, creating extraneous cognitive 
load. However, further research is needed 
to confirm this. 

Conclusion

The purpose of this paper has been to 
provide a ‘lens’ through which educators 
can critique the evidence for different 
teaching approaches in mathematics and 
numeracy. Principally, working memory 
load needs to be managed effectively to 
expedite learning. 

Understanding the characteristics of 
the learner’s cognitive ‘hardware’ the 
learner’s cognitive ‘software’ — including 
the types of knowledge and skills being 
acquired — and managing cognitive load 
in mathematics instruction empowers 
educators to make robust decisions within 
their classrooms. It also facilitates better 
outcomes for learners and will, hopefully, 
lead to improvements in the ‘health’ of 
mathematics and numeracy proficiency in 
Australia overall.

In terms of our cognitive hardware, 
gaining and sustaining student attention 
is critical, otherwise learning will not 
happen. Increasing the salience of target 
concepts, removing distractions, taking 
steps to prevent student anxiety, and 
explicitly teaching students how to ‘attend’ 
paired with consistent reinforcement, 
assists teachers to direct student focus. 
Furthermore, managing working memory 
limitations of students expedites learning, 
because if working memory is overloaded, 
learning is reduced. 

Practice is necessary to consolidate 
learning. However, spaced practice, 
when content is revisited over time, is 
preferable to massed practice because of 
working memory depletion. The Concrete-
Pictorial-Abstract approach helps learners 
to make links between prior knowledge 
held in long-term memory and information 
coming into working memory, as it starts 
with representations which are most 
familiar and moves towards less familiar 
representations in a scaffolded fashion. 
Schemas held in long-term memory are 
refined when feedback is timely, specific, 
understandable and actionable.

Mathematics taught in school is a form of 
Biologically Secondary Knowledge (BSK), 
which is learned in tandem with Biological 
Primary Knowledge (BPK), such as number 
sense. However, there are several myths 
surrounding these types of knowledge. 

Research supports the idea that BPK in the 
form of domain-general critical thinking 
skills are generally not conducive to being 
explicitly taught because they are acquired 
naturally. The opposite is true for BSK 
which requires explicit-teaching and effort 
and persistence on behalf of the learner. 
Furthermore, teacher attempts to make 
BSK engaging via immersion approaches 
such as using rich real-world collaborative 
tasks can inadvertently overload working 
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memories of ill-equipped students, create 
anxiety, reduce learning and subsequently 
undermine engagement.

The teaching approach used depends on 
learner expertise, or the degree of element 
interactivity for the person processing the 
information. When introducing students 
to material which is high in element 
interactivity, explicit-direct instructional 
approaches are the method of choice, 
while minimally-guided approaches are 
preferable when the learner has developed 
expertise and element interactivity is low.

 Finally, in terms of the Instructional 
Hierarchy for Mathematics, explicit 
instruction should be the tool of choice 
for acquisition and fluency phases, while 
minimally-guided approaches are best 
suited to the generalisation and adaptation 
phases when students have developed a 
higher degree of proficiency. Instructional 
formats which optimise cognitive load 
include worked examples with guidance 
fading and feedback, followed by 
conventional problems to develop fluency 
and formats which are integrated and/or 
spatially contiguous, signalled, and draw on 
complementary modalities. 
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